
Quantumphysics 2
Exam August 23, 2010.

Tentamenhal 02 (blauwborgje 4), 9.00-12.00.

� Write your name and student number on each sheet you use.
� The exam has 4 problems.
� Read the problems carefully and give complete and readable answers.
� No books or personal notes are allowed.

Problem 1
i) What are the cartesian-coordinate representations of the angular momen-

tum operators L̂x, L̂y and L̂z? Using this, prove the commutation relation
[L̂x, L̂y] = i~L̂z.

[4 points]

Answer: We have that L = r× p, hence

Lz = −i~
(
x
∂

∂y
− y ∂

∂x

)
,

and the same for the other components, cyclically permuting
x, y, z.

ii) Show that the operators L̂± = L̂x±iL̂y act respectively as raising and lowering
operators for the z component of the angular momentum, by evaluating the
action of L̂z on the states L̂±|l,m〉. (hint: the commutator [L±, Lz] might be
useful here)

[4 points]

Answer: We need to consider LzL±, that is L±Lz − [L±, Lz]. The
required commutator is [L±, Lz] = ∓~L±. Thus LzL±|l,m〉 =
(L±Lz ± ~L±)|l,m〉. Since |l,m〉 is an eigenstate of Lz, this gives
LzL±|l,m〉 = ~(m ± 1)L±|l,m〉. Therefore L±|l,m〉 is eigenstate
for the operator Lz but with eigenvalues ~(m ± 1), i.e. L± is a
raising/lowering operator for Lz.

iii) A system is in an eigenstate of L̂2 and L̂z, with quantum numbers l and m.
Calculate 〈L̂x〉 and 〈L̂2

x〉.
[3 points]

Answer: Simply applying Lx = L++L−
2

to the ψ state, we find out
that 〈Lx〉 = 0. Writing L2

x = (L2
+ + L2

− + L+L− + L−L+)/4 and
again applying the raising/lowering properties, we find out that
〈L2

x〉 = ~2[l(l + 1)−m2]/2.
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iv) The wavefunction of a hydrogen atom can be written as ψnlm = Rnl(r)Y
m
l (θ, φ).

Sketch the radial parts R00(r), R20(r), and R21(r).
[3 points]

Answer: R00 is eindig voor r = 0 en heeft geen nuldoorgangen;
R10 is eindig voor r = 0 en heeft een nuldoorgang; R10 is 0 voor
r = 0 en heeft geen nuldoorgangen

v) Give the matrix representation for the operators Ŝz and Ŝ2 for a particle with
spin 3/2.

[3 points]

Answer:

S2 =
15~2

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Sz =
~
2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


vi) An unperturbed system has only two eigenfunctions |1〉 = xe−x

2 and |2〉 =
x3e−x

2 which are non-degenerate. Suppose there is a perturbing potential
of the form αx. Argue (i.e. do not calculate!) why this perturbation does
not lead to a first or second order correction to either the energy or the
wavefunctions.

[3 points]

Answer: All the integrals involved in the perturbation calculations
are vanishing because we are integrating an odd function on a even
domain. So the perturbation does not change the energetic levels.

vii) Why can the matrix below not be a valid density matrix?
[3 points]

1

3

 2 1 1
1 1 0
1 0 1


Answer: The trace is not equal to 1
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Problem 2
Consider a tritium atom, consisting of a nucleus 3H (the triton) an an electron.
The triton, which consists of a proton (Z = 1) and two neutrons, is very unstable,
since by β-emission it decays to 3He, which contains two protons (Z = 2) and a
neutron. This decay process occurs very rapidly with respect to the characteristic
atomic times and can be considered instantaneous. As a result, there is a sudden
doubling of the Coulomb attraction between the atomic electron and the nucleus,
when the decay takes place.

Assuming that the tritium atom is in the ground state ψ(Z=1)
1s (~r) when the decay

takes place, and neglecting recoil effect, find the probability that immediately after
the decay the He+ ion can be found:

i) In its ground state ψ(Z=2)
1s (~r).

[7 points]

Answer: Let’s assume that the decay takes place at t = 0. At
times t < 0, the wavefunction of the system is

Ψ(r, t) = ψZ=1
1s (r) exp(−iE1st),

where
ψZ=1
1s (r) =

1√
π

exp(−r)

is the ground state for the tritium atom. At times t > 0, we have

Ψ(r, t) =
∑
k

ckψ
Z=2
k (r) exp(−iEkt),

where ψZ=2
k are the hydrogenic wavefunctions for Z = 2 ( 3He).

Thus the probability of finding the 3He in the ψZ=2
k at t > 0 id

Pk = |ck|2, where ck = 〈ψZ=2
k |ψZ=1

1s 〉. In the specific case,

c1s =

∫
[ψZ=2

1s (r)]∗ψZ=1
1s (r) dr =

16
√

2

27

. Therefore the probability is P1s = |c1s|2 = 0.702

ii) In any state other than the ground state (i.e. total probability for excitation
or ionization).

[3 points]

Answer: The total probability for excitation or ionization is 1 −
P1s = 0.298

iii) In the 2s state.
[5 points]
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Answer: P2s = 0.25

iv) In a state with l 6= 0
[5 points]

Answer: For states with l 6= 0, the coefficients ck vanish, since
ψZ=1
1s is spherically symmetric. Thus Pk = 0

Hint: The s wavefunctions for n = 1, 2 are given by:

ψ1s(~r) =
1√
π

(Z/a0)
3/2 exp(−Zr/a0)

ψ2s(~r) =
1

2
√

2π
(Z/a0)

3/2(1− Zr/2a0) exp(−Zr/2a0).

The integral ∫ ∞
0

dr rme−xr = m!x−(m+1)

might be useful.

Problem 3
A one-dimensional anharmonic oscillator is described by the Hamilton operator

Ĥ = Ĥ0 + Ax3 +Bx4,

where
Ĥ0 = ~ω

(
â†â+

1

2

)
i) Give the general expression for the first order energy correctie of the n−th

energy level of the unperturbed system.
[4 points]

Answer: De eerste orde correctie voor het n-de niveau zijn gelijk
aan de diagonaal componenten van Ĥ ′:

〈
n
∣∣∣Ĥ ′∣∣∣n〉.

ii) Calculate the first order correction to the unperturbed n−th energy level due
to the presence of the perturbation.

[8 points]
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Answer: De operator x̂ kan uitgedrukt worden in termen van
creatie en annihilatie operatoren: x̂ = 1

β
√
2

(
â† + â

)
, where β2 =

mω0

~ . Hiervan gebruikmakend wordt de uitdrukking voor x̂3:

x̂3 =

(
1

β
√

2

)3 [(
â†
)3

+ â†â2 +
(
â†
)2
â+ â†ââ† + â

(
â†
)2

+ â3 + ââ†â+ â2â†
]

Voor de eerste orde correcties moeten we de diagonaal elementen
uitrekenen: 〈

n|Ĥ ′|n
〉

= A
〈
n|x̂3|n

〉
+B

〈
n|x̂4|n

〉
.

Omdat de kubische term altijd een oneven aantal cre-
atie/annihilatie operatoren bevat zijn de bijdrages aan de diag-
onaal elementen hiervan gelijk aan nul.
Voor de andere bijdrage (x4 term) geldt:

〈
n|x̂4|n

〉
=

(
1

β
√

2

)4 [ 〈
n
∣∣∣(â†)2 â2∣∣∣n〉+

〈
n
∣∣â†ââ†â∣∣n〉+

〈
n
∣∣â†â2â†∣∣〉+〈

n
∣∣∣â (â†)2 â∣∣∣n〉+

〈
n
∣∣ââ†ââ†∣∣n〉+

〈
n
∣∣∣â2 (â†)2∣∣∣n〉 ] =(

1

β
√

2

)4 [√
n(n− 1)(n− 1)n+

√
nnnn+

√
(n+ 1)(n+ 1)nn+√

nn(n+ 1)(n+ 1) +
√

(n+ 1)(n+ 1)(n+ 1)(n+ 1) +√
(n+ 1)(n+ 2)(n+ 2)(n+ 1)

]
=(

1

β
√

2

)4

(6n2 + 6n+ 3) =
3

4β4
(2n2 + 2n+ 1)

Dus de energie correctie voor het n-de niveau is 3B
4β4 (2n2 + 2n+ 1).

iii) Under what conditions are the corrections found in ii) a good approximation?
(this will depend on the quantum number n.)

[8 points]
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Answer: Storingsrekening is een goede benadering als geldt:∣∣∣Ĥ ′nn∣∣∣ << E0
n

en ∣∣∣Ĥ ′nn∣∣∣ << ∣∣E0
n − E0

n±1
∣∣ .

De niveauopsplitsing tussen opeenvolgende niveaus voor de har-
monische oscillator is E0

n−E0
n−1 = ~ω. Verder geldt

∣∣∣Ĥ ′nn∣∣∣ ≈ 3B
2β4n

2,
dus

3B

2β4
n2 << ~ω.

Hint: x̂ = 1
β
√
2
(â† + â)

Problem 4
Consider the two state system of a spin 1/2 particle, where the eigenstates of Sz
are given by

| ↑〉 =

(
1
0

)
| ↓〉 =

(
0
1

)
Suppose there is a magnetic field ~B pointing in the z direction, ~B = (0, 0, B),

and a corresponding Hamiltonian given by Ĥ = − ~B · ~µ, where ~µ = − e
mc
~S and

~S = ~
2
~σ.

i) Find the normalized energy eigenstates and eigenvalues.
[5 points]

Answer: The Hamiltonian is Ĥ = eB
2mc

σz, so clearly | ↑〉 and | ↓〉
are eigenstates of Ĥ. Since σz| ↑〉 = +| ↑〉 and σz| ↓〉 = −| ↓〉 , we
have that

Ĥ| ↑〉 = +
eB

2mc
| ↑〉 Ĥ| ↓〉 = +

eB

2mc
| ↓〉

ii) Find the normalized eigenstates and eigenvalues of Ŝx in terms of the eigen-
states of Ŝz.

[6 points]
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Answer: The normalized states for Sx = ~
2
σx are

|+〉 =
1√
2

(| ↑〉+ | ↓〉) |−〉 =
1√
2

(| ↑〉 − | ↓〉)

with Sx|+〉 = +~
2
|+〉 and Sx|−〉 = −~

2
|−〉

Assume that at time t = 0 the spin state is the positive eigenstate of Ŝx.

iii) Find the state as a function of time, t.
[5 points]

Answer: Let |χ, t〉 be the time dependent state, so we have

|χ, 0〉 = |+〉 =
1√
2

(| ↑〉+ | ↓〉)

At later times the state is

|χ, t〉 = e−iHt/~|χ, 0〉 =
1√
2

(
e−iωt| ↑〉+ eiωt| ↓〉

)
with ω = eB

mc
.

iv) Find the expectation value 〈Ŝx〉 as a function of t for the state in iii).
[6 points]

Answer: Using σx| ↑〉 = | ↓〉 and σx| ↓〉 = | ↑〉 one finds:

〈χ, t|Sx|χ, t〉 =
~
2

1

2

(
〈↑ |eiωt/2 + 〈↓ |e−iωt/2

)
σx
(
e−iωt/2| ↑〉+ eiωt/2| ↓〉

)
=

~
4

(
〈↑ |eiωt/2 + 〈↓ |e−iωt/2

) (
e−iωt/2| ↓〉+ eiωt/2| ↑〉

)
=

~
4

(
eiωt + e−iωt

)
=

~
2

cosωt

v) Find the probabilitity as a function of t that a measurement of Sx will give a
positive outcome for the state found in iii).

[5 points]
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Answer: Using

| ↑〉 = (|+〉+ |−〉) | ↓〉 = (|+〉 − |−〉)

we have

|χ, t〉 =
1

2

((
e−iωt/2 + eiωt/2

)
|+〉+

(
e−iωt/2 − eiωt/2

)
|−〉
)

= cos
1

2
ωt|+〉 − i sin

1

2
ωt|−〉.

So the probability to find a positive outcome is cos2 1
2
ωt
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